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ABSTRACT: We complete the analysis started in [arXiv:0804.0198] of the Hawking radiation
calculated by means of anomaly techniques. We concentrate on a static radially symmetric
BH, reduced to two dimensions. We compare the two methods used to derive the integrated
Hawking radiation, based on the trace and diffeomorphism anomaly, respectively, and show
that they can be reduced to the same basic elements. We then concentrate on higher
moments of the Hawking radiation and on higher spin currents, and show that, similarly
to trace anomalies, also diffeomorphism anomalies are absent from the conservation laws
of higher spin currents. We show that the predictivity of the method is due to the Wy,
current algebra underlying the effective model that describes matter around the black hole.
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1. Introduction

Hawking radiation [, P] is a universal phenomenon which does not depend on the details
of the collapse that gives rise to a black hole. Therefore one would expect that there exist
methods to calculate it that have the same character of universality. Local anomalies have
such a characteristic, because all anomalies have a universal form, only the coefficients in
front of them are model dependent. A first attempt to compute Hawking radiation by
exploiting trace anomalies was made long time ago by Christensen and Fulling, 9], and
reproposed subsequently by B, pJ] in a modified form. More recently a renewed attention
to the same problem has been pioneered by the paper [J], where diffeomorphisms anomalies
have been used instead of trace anomalies. This paper is at the origin of a considerable
activity with numerous contributions [{—[Ld, [2-Eg].

The purpose of the present paper, which is a sequel to [[T], is to assess the role of
anomalies in computing the thermal spectrum of the Hawking radiation. Our conclusion



is that, while anomalies (trace or diffeomorphism) can be used to compute the integrated
Hawking radiation, this is not the case for higher moments. Rather we find that there
exists an underlying structure at the basis of the universality of Hawking radiation: this is
a W, algebra which characterizes the underlying matter model describing the radiation.

In this paper, as in [[], in order to be able to discuss the essential aspects while
avoiding inessential complications, we will stick to the simplest case of a static chargeless
black hole with metric

b

2 r(rVde2 —
ds® = f(r)dt 1)

dr? — r2dQ? (1.1)

f(r) near the horizon behaves like f(r) =~ 2k(r — rg), where k is the surface gravity.
An essential step in this kind of approach is the reduction to a two-dimensional problem.
This can be done by using radial symmetry, postulating the independence of the polar
coordinates 6, ¢ and expanding the fields in spherical harmonics. For instance, for a scalar
field, ¢(t,r,0,0) = >, Yim(0,¢) dim(t,7). One then integrates, in the action, over the
polar angles. This has been done in some details, for instance, in [f], the result being a
theory of infinite many complex scalar fields ¢y, interacting with the background gravity
specified by the metric

b

2 (Vi —
ds* = f(r)dt )

dr? (1.2)

In the following we will retain only one of all these complex scalar fields. The analysis
for all the other scalar fields is the same, what is left out from our analysis is how to
resum all these contributions and obtain some four-dimensional information (see however
the comment at the end of section 3).

In the first part of our paper we review the two methods based on anomalies, the
diff and trace anomaly method. The purpose is to stress that they are actually based
on the same basic formulas and same basic requirements (no ingoing flux from infinity
and vanishing of energy-momentum tensor at the horizon). Next we take up the problem
of higher moments of the Hawking radiation. Following [f—H], we attribute these higher
fluxes to phenomenological higher spin currents, i.e. higher spin generalizations of the
energy-momentum tensor. In [[L] it was shown that these currents can be constructed out
of a W, algebra. It is the properties of this W, algebra that explain the higher moments
of Hawking radiation. As was shown in [L]] the higher spin currents are not anomalous, at
variance with [§, f], where, in a different (spinorial) matter model, anomalies were found
in the conservation laws and traces of higher spin currents. In this paper we complete
the analysis started in [[[J]], where, using consistency methods, the absence of true trace
anomalies was proved at least for the fourth order current. Here we deal with the far more
complicated case of diff anomalies. The result is invariant: there cannot exist any true diff
anomalies in the fourth order current. This confirms a well founded prejudice according
to which true gravitational anomalies can exist when there is a precise correspondence
between number of derivative in the anomaly polynomial and space-time dimensions.



The conclusion of our analysis is that the universal element that explains the univer-
sal character of the Hawking fluxes lies in the W, algebra underlying the matter model
for radiation.

2. Review of the anomaly methods

In [ff] the method used was based on the diffeomorphism anomaly in a two-dimensional
effective field theory near the horizon of a radially symmetric static black hole. The ba-
sic argument is that, since just outside the horizon the ingoing modes cannot classically
influence the physics outside the black hole, they can be integrated out, giving rise to an
effective theory of purely outgoing modes. So the physics in that region can be described
by an effective two-dimensional chiral field theory (of infinite many fields). This implies an
effective breakdown of the diffeomorphism invariance. The ensuing anomaly equation can
be utilized to compute the outgoing flux of radiation. The latter appears as the quantum
factor that restores the diffeomorphism symmetry.

2.1 Diff anomaly method

Let us describe in detail the corresponding derivation as given, in a somewhat simplified
form, in [Bf.! The range of  contains two relevant regions: the region o, defined by
r > rg + €, rg being the horizon radius, and the region H, defined by rg < r < rg + e.
The region H is where the ingoing modes have been integrated out, therefore the effective
field theory there is anomalous, while in o we expect a fully symmetric theory. This is

expressed by a vanishing energy momentum tensor covariant divergence

VT, 0) =0, (2.1)
while in the H region we have
VT = TR iR (2.2)
ptv(H) 967 v

This is the covariant form of the diffeomorphism anomaly, with a coefficient appropriate
for chiral (outgoing or right) matter with central charge cg. In (£.9) €., = /=g, Where
¢ is the numerical antisymmetric symbol (917 = 1). In the case of the background metric
we are considering, the determinant is -1. Since the metric is also static, the two equations
above take, for 7T}, a very simple form:

8T,y =0 (2.3)
and
he 1
T =00 =0, (g (117 507 ) (2.4)

! After completion of this paper one of the author, R.Banerjee, has pointed out to us that the diff anomaly
method can be further simplified by using a single Ward identity instead of two as in the presentation below.
This does not change however our conclusions in section 3.



respectively. Now we integrate these equations in the respective regions of validity
Tt?o) = Qo (25)
and
T}y (r) = am + N{(r) = N{ (ra) (2.6)

We remark that a,, being constant, determines (together with the condition that there is
no ingoing flux from infinity) the outgoing energy flux. This is the quantity we would like
to know. To this end we define the overall energy-momentum tensor.

Ty =T b0(r = —€) + Tjgy (1 = 0(r — 7 — €)) (2.7)

It is understood that € is a small number which specifies the size of the region where the
energy-momentum tensor is not conserved. If we take the divergence of (R.7), we get

T} = (ao—ag + N{ (re)) 0(r —rp, —€) + 0r (N/ (r)H(1)) (2.8)

where H(r) =1 —6(r —rg — €). We can now define a new overall tensor

A

T/ (r) =T/ (r) = Ny (r)H(r) (2.9)
which is conserved
OIT =0 (2.10)
provided that
ap—apg + N/ (rg) =0 (2.11)

Now, the condition that at the horizon the energy-momentum tensor vanishes, leads to
ag =0 (see (£.§)). Therefore
hk?
=N’ = 2.12
Qo t (TH) 487T CR ( )
This is the outgoing flux at infinity and coincides with the total Hawking radiation (see
below) emitted by the black hole specified by the metric ([[.3). We remark that Tt’" is
constant everywhere.

2.2 Trace anomaly method

The method based on the trace anomaly was suggested long ago by Christensen and
Fulling, [A9] (see also [p(]). Such a method has been reproposed in different forms in [51], b7
and, in particular, [[f] and [g] (see also [[L1]]). This approach is based on the argument that
the near-horizon physics is described by a two-dimensional conformal field theory (see
also [f4-F5]). Classically the trace of the matter energy momentum tensor vanishes on

shell. However it is generally nonvanishing at one loop, due to the anomaly: T = - R,



where R is the background Ricci scalar. c¢ is the total central charge of the matter system.
The idea is to use this piece of information in order to compute the same constant a,
calculated with the previous method. Here we do not have to split the space in different
regions, but we consider a unique region outside the horizon.

With reference to the metric ([.2) it is convenient to transform it into a conformal
metric. This is done by means of the "tortoise’ coordinate r, defined via 5~ = f(r). Next it
is useful to introduce light-cone coordinates u = t—r,,v = t+7,. Let us denote by Ty (u, v)
and Ty, (u,v) the classically non vanishing components of the energy-momentum tensor in
these new coordinates. Our black hole is now characterized by the background metric g,3 =
€¥Nag, Wwhere ¢ = log f. The energy-momentum tensor can be calculated by integrating
the conservation equation and using the trace anomaly. The result is (see next section)

_hep (o 1 2 (hol)
Toulu0) = o (oo = 5(0u0)?) + T ) (213)

ol)

where TQEZ is holomorphic, while T, is conformally covariant. Namely, under a conformal

transformation u — @ = f(u)(v — 0 = g(v)) one has

Tty 0) = (%)2%&(@7”) (2.14)

Since, under a conformal transformation, ¢(u,?) = ¢(u,v) —In (d—f d—g) it follows that

T (@) = (j‘i) (Tuﬁ"”(U) th > (2.15)
V),

Regular coordmates near the horizon are the Kruskal ones, (U, defined by U = —e™ "

and V = €Y. Under this transformation we have

T W) = (HlU)Q(TLSZO”(u) PR v} (2.16)

Now we require the outgoing energy flux to be regular at the future horizon U =0 in the

Kruskal coordinate. Therefore at that point TéZOl)( ) is given by CR“ . We remark that
this implies in particular that Ty, (r = rg) = 0.
Since the background is static, T, QEZOD (u) is constant in ¢ and therefore also in . There-

fore at r = oo it takes the same value ﬁi’gf. On the other hand we can assume that at

r = oo there is no incoming flux and that the background is trivial (so that the vev of
koD (u) and Ty, (u,v) asymptotically coincide).?
Therefore the asymptotic flux is

(T7) = (Tu) — (T} = ZgiﬂcR (2.17)

2We stress that vanishing of (T,,) does not contradict the stress tensor conservation. T,, has an
expression similar to (), with subscripts u replaced by v and cr replaced by cr, see 1m below. Since
T2-hol vanishes at infinity and is conserved, it would seem at first that this leads to a contradiction with a
formula similar to () for the ingoing part. We notice however that V' = 0 is not the future horizon and
no vanishing condition for the stress tensor is required there.



This outgoing flux coincides with the constant a, calculated above.
In summary we can say that the basic ingredients of the two methods are:

(a) in the first case the integration of the anomalous and non-anomalous conservation
of the energy-momentum tensor, in the second case the integration of the energy-
momentum conservation in the presence of a trace anomaly;

(b) in both cases we have the condition that the energy-momentum tensor vanishes at
the horizon and there is no incoming energy flux from infinity.

What energy-momentum tensor vanishes at the horizon will be clarified below.

3. Comparison between the two methods

The generic case of a chiral two-dimensional theory with central charge cg and ¢y, for the
holomorphic and anti-holomorphic part, respectively, is characterized by the presence of
both diffeomorphism and trace anomaly,

h Cr — Cj,

T, = — O 1
V. JEI— e O'R (3.1)
and
Ta—i(c +cr)R (3.2)
TV ‘

Let us rewrite these equations in terms of the light-cone coordinates v and v introduced
before. In this basis the nonvanishing metric elements take the form:

1
Guv = §€<p = —€uw, guv =2 ¥ =" (3.3)
and eq. (B.I) becomes
_ h cr—cp
Vu,Tuv + Vvfruu - AST 9 EuvauR (34)
- h CR —CL,
VufTvv + VvTuv - _ZlS—WTeuvavR (35)

On the other hand (B.Z) becomes

h cr+cp
Ty = —
YU A8 4

Replacing this with R = —49,0,90 e~ % in (B.5), we get

Re¥ (3.6)

h
(%Tuu = E CR (%‘Tuu (37)
where
1



Integrating (B.7) we get

h
Tuu = 5 uu T(hOl) .
(u7 U) 2Un CR 7T, (u7 U) + Loy (’LL) (3 9)
where TH(ZO”

Similarly, integrating (B.4), one obtains

depends only on u.

h
Ty (u,v) = Y cr, Tow(u,v) + T5$_h°l)(v) (3.10)

where T, = 9%2¢ — 1(0vp)?, and T, {a—hol) depends only on v. The two equations (B.9)
and (B.I() are our basic result. They are equivalent to the two equations (B.J) and (B.2).

In the “trace anomaly” method we have utilized eq. (B.9), required that the energy-
momentum tensor be conserved and imposed the conditions (b) of the previous section.
This, in particular, amounts to requiring cg = ¢y, in the region outside the horizon. We see
now that the possibility to integrate (B.1]) in the presence of (B.J) is actually insensitive to
the relation between c¢;, and cp.?

In the "diff anomaly” approach we integrated (B.1]) in the near horizon region and
the conserved energy-momentum divergence away from the horizon. Then we imposed
vanishing of energy-momentum tensor at the horizon. It is obvious that we used again (B.9)
and (B.10) in disguise.

It is actually possible to be more specific. We have already noticed that in the trace

anomaly method Ty,(r = rg) = 0. On the other hand we point out that T&',hhoz) is

)

no ingoing flux from infinity. It is also easy to see that, if cg = ¢, Tyu = Tyw. Therefore

constant in r and ¢, for the same reason as 7, QEZOI is, and thus vanishes upon the request of
T/ = Ty — Ty is constant everywhere and equals the outgoing flux (R.17) at infinity.
Therefore the T} of subsection 2.2 equals T} of subsection 2.1. And it is also clear that
the energy-momentum tensor vanishing at the horizon in subsection 2.1 is to be compared
with Ty, (u,v) of subsection 2.2.

It was important to stress the basic role of (B.9) and (B.10) because, as we will see,
when we come to higher spin currents, it is not possible to describe the higher flux moments
by means of anomalies (either trace or diff), but the analogues of (B.9) and (B.I0) still hold
and provide the desired description.

It is worth at this point spending a few words about the validity of the results obtained
with the above methods in relation to the reduction from 4 to 2 dimensions mentioned
in the introduction. As pointed out there the reduction of a free massless scalar field
(interacting with the background metric) into an infinite set of free massless scalar fields,
is only valid near the horizon. Away from the horizon the equations of motion of these fields
acquire a potential term. These potential terms therefore modify egs. (B.1) and (B.9) and
consequently (B.9) and (B.10) and account for the difference between 2 and 4 dimensions. In
the literature one can find estimates of the effect of such modifications, see for instance [B0].
They translate into a greybody factor that cuts the Hawking radiation at infinity calculated
above by an order of magnitude.

3In other words we can integrate the trace anomaly even if cg # cr,. This is clearly only a characteristic
of two dimensions



4. Higher moments of the Hawking radiation and higher spin currents

The thermal bosonic spectrum of the black hole is given by the Planck distribution

Nw) = —2 (4.1)

where 1/ is the Hawking temperature and w = |k|, the absolute value of the momentum.
g+ 1s the number of physical degrees of freedom in the emitted radiation. In two dimensions
we can define the flux moments as follows

—+o00 n—2

Jx wk
F, = — dk———
" 47r/ efw — 1

—00

They vanish for n odd, while for n even they are given by

Fy, = L dww® IN(Ww) =g ﬂBg K2 (4.2)
"om J, * 8 " ’
where B,, are the Bernoulli numbers (By = %,34 = —%,...). Therefore the outgoing

flux (R.17) is seen to correspond to F when g, = cp.

The authors of [ posed a very interesting question: the outgoing flux (= F3), cor-
responds to the integrated distribution; is it possible to describe the higher moments of
the Hawking radiation in the same way as we described the lowest one, by means of an
effective field theory and, in particular, by generalizing the above two methods? They
suggested that this can be done in terms of higher tensorial currents, which play the role
of the energy-momentum tensor for higher moments.

In [[[J] an example of such currents was constructed in terms of an elementary complex
scalar field. If the underlying holomorphic currents satisfy a W, algebra, the effective
covariant currents were shown to describe precisely the higher moments of the Hawking
radiation. Let us briefly review the construction of [[[7]].

4.1 The W, algebra

Higher spin currents are expressed in terms of a single complex bosonic field (¢ = 2) and
use is made of the W, algebra. To this end we go to the Euclidean and replace u,v with
the complex coordinates z, z.

Following [54] (see also [67-F9]) the starting point is a free complex boson having the
following two point functions

(¢(21)P(22)) = —log(z1 — 22) (4.3)
(p(21)9(22)) =0
(¢(21)9(22)) =0

The currents are defined by

»
|
—

8.(2) = B(s) ) (-1 A} :050(2)02"6(2): (4.4)
1

e
Il



where

B(s) = <—£>s_2%, Azzt%%(s;l) (2:;) (4.5)

They satisfy a W, algebra [56]. It is worth recalling that this 1, algebra has a unique cen-

tral charge, which corresponds to the central charge of the Virasoro subalgebra. Therefore

it has a unique basic cocycle, which is the cocycle appearing in the Virasoro subalgebra.
The first few currents are

jg) = - az¢az$ (46)
. 7 —_ _
IS 5 (:0.002¢: — :92¢0.¢:)
. 1 — _ _
i = 5 (:0:0020: —3:020026: + :02¢0.97)

j8) = —ﬁ (:0.60°%: —6:0200°%: +6:0300%6: — :01¢0.8:)
jgg)zzzz = —% (:8Z¢8§$: —10 :aﬁwﬁa: +20 :aﬁwﬁa: —10 :8?(15835: + :82(15@5:)

Normal ordering is defined as
10" 0" G = Jim {02, 6(21)0%,6(22) — 0%, 0%y ($(21)d(22)) } (4.7)

As usual in the framework of conformal field theory, the operator product in the r.h.s. is
understood to be radial ordered.

The current jg)(z) = — :0,9(2)9,4(2): is proportional to the (normalized) holomor-
phic energy-momentum tensor of the model and, upon change of coordinates z — w(z),

transforms as

:0.00.0: = (W)? 10,00y ¢: —é {w, z} (4.8)

where {w, z} — the Schwarzian derivative — is

We are interested in the transformation properties of the currents j(*)(u) when w(z) is
w(z) = —e ** (4.10)
In 1] we obtained
1.0 = () (194 0.) (a.11)
where
(Xs) = (=) 71 (=) 2w (4.12)

Eq. (E.11) has to be compared with eq. (R.14). This is a higher order Schwarzian derivative
evaluated at w(z) = —e~"*. It plays a role analogous to the r.h.s. of (2.17). Below we will
compare it with the radiation moments in the r.h.s. of ({.2).



4.2 Higher spin covariant currents

Let us now return to the light-cone notation. We identify g&i’ (u) up to a constant with the

holomorphic energy momentum tensor

i@ (y) = —27 T(hel) (4.13)

uu

(s)

Similarly we identify jus,,,u, with s lower indices, with an s-th order holomorphic ten-
sor. They can be naturally thought of as the only non-vanishing components of a two-
dimensional completely symmetric current. In analogy with the energy-momentum tensor,
we expect that there exist a conformally covariant version Jz(f)u of jq(f)u The latter must
be the intrinsic component of a two-dimensional completely symmetric traceless current
J;(j)...us, whose only other classically non-vanishing component is Jgs)v We identify them
with the currents (4.28)

The previous holomorphic currents refer to a background with trivial (Euclidean) met-
ric. In order to find a covariant expression of them we have to be able to incorporate the
information of a non-trivial metric. This was done in [[L]]] following [ff]. According to the
recipe explained there, the covariant counterpart of jz(fu should be constructed using cur-

rents

e—0 ent+m

n,m n+m u) 1: —ne(ul)—me(uw n m C”ymh
JQ(L..’.u) — e(ntm)e(u) 1im {e e(u1)—mep( 2)vu1¢vu2¢_ } (4.14)

where ¢, = (—)™(n +m — 1)! are numerical constants determined in such a way that
all singularities are canceled in the final expression for J{ - Therefore (E14) defines the
normal ordered current

T = VigVi: (4.15)
After some algebra one gets
J@ _ @ D
h 2
JW () g2y Zq72)
and
2h 5h h
T a = (—éfﬁ’ + 207 (0uT)’ = TETOLT (4.17)
2250 - Lagrge L (927) J$2) + D (0,T) VI
3 uu 21 uuu 21 u uu 42 u u“uu
5 5 5 5
_ (2 _ 2 r2q7@ L 2 2)) _ Zaq74) :(6)
where )
T = 812/10 ) (au(’p)z (4.18)

— 10 —



These equations are the analogs of (B.9).
The covariant divergences of these currents are

VI = (R (119)
gV, =0 (4.20)
gV I+ éqZ (VuR) I =0 (4.21)
GV T D + 2 (V) TG, = 0 (122

and, for s =6

) 1 1
uyy (6) e V2 \V4 2 - \V4 V2 2 - V3 (2)

+ 2 (VuR) I, =0 (123)

Eq. (E19) is to be compared with (B.7) while the remaining ones are the relevant higher
spin analogs.

The above equations mean that all the higher spin equations are covariantly conserved.
In the r.h.s. of (:20)(f-23), unlike ([19), there does not appear any terms proportional to
h. Any such term must be interpreted as the consequence of a trace anomaly (and possibly
a diff anomaly) as has been argued by [J. In other words if there is a term proportional to
h in ¢g*"*V,Jyu..w this must be understood as related to the second term in the covariant
divergence V¥J, v = 9 Voduu..w + 9 Vudyu. - Such a term tells us that Jy,.. ., which
classically vanishes, takes on a nonzero value at one loop, revealing the existence of a trace
anomaly. This is precisely what happens for the covariant second order current (energy-
momentum tensor) Jﬁ) (E19): the trace is Tr(J®)) = 2¢v*J®?),,,. Thus, (L19) reproduces
the well known trace anomaly Tr(J(?)) = —%R, where in our case cp = 2.4

However for the other equations, we see that the terms that carry explicit factors of
h cancel out in eqs. ({.20)—(.23). This implies the absence of A terms in the trace, and
consequently the absence of any trace anomaly as well as of any diffeomorphism anomaly.

In (] it was shown that, as far as trace anomalies are concerned, this result is to be
expected, since via a cohomological analysis it can be seen that no true trace anomaly can
exist in higher spin currents.

Of course we could repeat the same construction for antiholomorphic currents and find
the corresponding covariant ones. We would find perfectly symmetric results with respect
to the ones above.

4.3 Higher moments of the Hawking radiation

Now let us apply to the just introduced higher spin currents an argument similar to the
one in section 2 for the energy-momentum tensor, using the previous results from the W,

We relate jfu) to the energy momentum tensor via the factor of 27 and the minus sign. This is because
in the Euclidean we want to conform to the conventions and results of [@], where properly normalized
currents satisfy a W algebra. This holds for higher order currents too: for physical applications their W
representatives must all be divided by —2m.

— 11 —



algebra. Introducing the Kruskal coordinate U = —e™"" and requiring regularity at the

horizon we find that, at the horizon, the value of jq(f)u is given by (Xs) in eq. ({.19). Next
jq(f)u(u) is constant in ¢ and r (the same is of course true for jz()s)v) Therefore, if we identify
jq(f)u(u) with jgs)z(z) via Wick rotation, (X;) corresponds to its value at » = oo. Since

Ju w(u) and J;7 . (u) asymptotically coincide, the asymptotic flux of these currents is

1 ,L's—2

1
(s) Sy - _ s
(Juu> + 271' <va> 271' <X8> 27T8H BS (424)

1
2

. 1
() -
) = =50

For the global —27 factor, see the previous footnote.
The r.h.s. vanishes for odd s (except s = 1 which is not excited in our case) and
coincides with the thermal flux moments (f£3) for even s.

4.4 A qualitative motivation for higher spin currents

We would like to spend a few words concerning the origin of higher spin currents, even
though what follows is very qualitative and is in fact not needed in the economy of the paper.

Let us suppose we know the energy momentum tensor of a fundamental theory which
faithfully reproduces the full spectrum of the Hawking radiation and expand it around our
background metric. To guess what may occur think of a quantum energy-momentum tensor
represented in the Sugawara form in a flat background: 7),, = (: J,J, : —trace), where, for
instance, J,, = 0,¢ in the simplest case. We can view it as an expression point-split by a
small but finite amount 2y

Tw(x) = il_)l% 1 Opd(x — y)0yd(x + y) — trace : (4.25)

The finite point splitting is meant to account for a nonlocal interaction that synthesizes the
interactions of the underlying model (see the related considerations in [[f]). Let us expand
in Taylor series

D Oup(x — y)&xb(ﬂ; +y):

—1) . y V.
:ZZ(M? Lyt Y00, . 0 d()Y Y 0,0y, .. Oy d(T) 1 (4.26)

This expansion is appropriate for a two-dimensional flat space-time, but we will need to
consider point splitting in a curved space-time. Therefore in ([[.26) the derivative will
be replaced by covariant derivative and the products y*!...yHiy" ... y" by complicated
expressions of the background. We represent all this by effective background tensor fields
B,(fl)___us. When inserted back in ([£.2), the quantum expression will give rise to an expansion
of the energy-momentum tensor in terms of higher spin currents coupled to such fields.
In a previous subsection we have constructed higher spin currents from a W, algebra
using a chiral coordinate z, which we understand as the local holomorphic coordinate over
a Riemann surface . A W, algebra is generated on a local patch not only by diffeomor-
phisms, but by more general coordinate transformations, the symplectomorphisms, which
involve also the cotangent bundle of ¥, see [f1]] and, for an explicit construction, [63]. In
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particular in [63] it is shown that from general transformations of the type

50(7‘)(27 z) = Z s C(S)(z7 ) 3ZC(T_S_2)(Z, 2) (4.27)

s=1

where C") are ‘ghost’ tensors of order r, the following algebra follows for an infinite set of
generators T(")(z, ),

[T(’") (2,2), T(s)(z', 2’)] = (T—l)@zld(z' — )T"T572(2,2) — (s—1)0.0(z — 2)T"T72(¢, 7))

This is the classical version of the W, algebra (for a quantum version, see for instance [pd)]).
It is possible to recognize in ([£.27) the transformations (5.4) and (f.5) below.

Now the above expression ([.27) exhibits a dependence both on z* and on y" =
dz*. We can think of y* as local coordinates on the cotangent bundle of ¥ and their
transformations can be conceived of as W, transformations. Therefore, even though the
details fully depend on the fundamental theory and remain implicit, the appearance of
higher spin currents and their W, algebra structure is not so surprising.

Each of these higher spin currents carries to infinity its own piece of information about
the Hawking radiation. Just in the same way as in the action the metric is a source
for the energy-momentum tensor, these new (covariant) currents will have in the effective
action suitable sources, with the appropriate indices and symmetries. In [L1]] they were
represented by asymptotically trivial background fields B,(fl),,,us (in [61] they were called
‘cometric functions’). So we have

1 0
() -
s = \/géB(S)ul---usS (4.28)
In particular Bfﬁ,) = gu,,/2. We assume that all Jﬁ),,,us are maximally symmetric and
classically traceless.

5. Diffeomorphism anomalies for higher spin currents

In subsection 4.2 we saw that it is consistent to require that higher spin currents are
covariantly conserved. This leads for such higher tensor currents to the absence both of
trace and diffeomeorphisms anomalies. The trace and covariant divergence of the currents
were determined with a particular construction based on currents made out of a bosonic
scalar field. Therefore it is important to find an independent confirmation of such results.

As for the trace anomalies it was shown in [[L1] that this is no accident: the trace of the
fourth order current does not admit true anomalies (there may appear anomalous terms,
but they correspond to trivial cocycles and can be canceled by suitable counterterms in
the effective action). This result is seemingly valid for all the higher spin currents, be-
cause a thumb rule suggests that true anomalies appear only when the cocycle engineering
dimension (in our case the total number of derivatives) is related in a precise way to the
space-time dimension.
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As for the diffeomorphism anomalies, on the basis of the previous construction there
is no evidence of them either. But in [[f] some diff anomalies appeared in the covariant
divergence of higher spin (bi-spinorial) currents. It is therefore important to verify that
this is not in contrast with our results above. This means that we have to prove that
such anomalies are trivial. Eqs. (.19) through ([.23), are covariant conservation equations
(as it is apparent in eq. ([.19)). Therefore, if anomalies ever appear in such conservation
equations, they appear in covariant form. Existence or non-existence of covariant anomalies
is not easy to analyze in general, while general results can be obtained for consistent
anomalies. Since absence of consistent anomalies implies absence of the corresponding
covariant ones, we will try to show that, for the conservation laws we are interested in, there
are no consistent anomalies (except the well-known one corresponding to (f.19)). It should
be remarked that this problem is interesting in itself, even independently of the application
considered in this paper, and, to our best knowledge, has not been studied so far.

In the sequel we will give for the fourth order current a proof of absence of diff anomalies
analogous to the one that was presented in [[[1]] for trace anomalies and, under reasonable
assumptions, we will extend the proof to currents of any order. This will lend support to
our previous claims, beyond the explicit construction of the previous section.

5.1 The consistency method for diff anomalies

The conservation of the energy-momentum tensor corresponds, as is well-known, to the
symmetry of the theory under the diffeomorphism transformations:

5&9#1/ = v,ugu + Vué,u (5-1)

where &, = g, ", and " represent infinitesimal general coordinate transformations x# —
zH 4+ &#. The background fields transform in a covariant way under these transformation

5B |, =0\B)

) e+ 0B+ 19, BY (5.2)

Similarly the conservations of higher spin currents correspond to the symmetry under
higher tensorial transformation. In particular the conservation of J*) is due to invari-
ance under

0 Bl(ﬁ),uzusm Vﬂl Tuopspa T cycl. (5.3)

where 7 is a completely symmetric traceless tensor and cycl denotes cyclic permutations
of the indices. The reason for tracelessness will be given later.

To find the (consistent) anomalies of the energy-momentum tensor and higher spin
currents with respect to the symmetry induced by the above transformations, we will an-
alyze the solutions of the relevant Wess-Zumino consistency conditions. An equivalent
(and simpler) way is to transform the problem into a cohomological one. The trick is
well-known. We promote the transformation parameters to anticommuting ghost fields
and endow them with a suitable transformation law. This gives rise to a nilpotent oper-
ator acting on the local functionals of the fields and their derivatives. Local functionals
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(cochains) and nilpotent operator (coboundary) define a differential complex. Anomalies
correspond to non-trivial cocycles.
For £ this leads to

Gt = ONE" (5.4)
beside
S A A A
557'qu =¢ 8)\7'qu + GMS Tawp + 0,€ Tuxp T 8p§ TuvA (5.5)

It is then easy to show that 5? =0.
In a similar way, beside 6,g,, = 0, we set

8 Tr =0 (5.6)

that is, we assume that 7 is an Abelian parameter. This is not obvious a priori and requires
a specific justification. We do it in appendix A. Now it is elementary to prove that, as
a consequence of the anticommutativity of 7 we have 62 = 0. More generally, since 7 is
assumed to anticommute with £, we have

=0, 62=0, 00, +06:6:=0 (5.7)

In the following we will denote by d.,d¢ also the corresponding functional operators. It
follows from (B.7) that the operator &, = d¢ + 0 is nilpotent. It is clear that d is
not the total functional operator of our system, but rather a truncated one, since we are
disregarding higher tensorial gauge transformations.® Such a truncation is justified by the
fact that our differential system is graded. This can be seen as follows.

Let us recall first the canonical dimensions of the various fields involved. g, has
dimensions 0; & has dimension (in mass) -1, while B and 7 have dimensions -2 and -3,
respectively. Now let us consider the nilpotent total differential operator oyt = d¢ 4074 -.
Then (integrated) anomalies are defined by

5‘50‘5 F(l) - hA, 5totA - 0 (58)

where I'M) is the one-loop quantum action. A, which is the integral of a local functional in
the fields and their derivatives, splits naturally into A¢ + A + ---. In turn each addend
splits into a sum of terms according to the degree of their integrand. The degree is defined
by the number of derivative of the integrand minus 1. Therefore we have for instance

Ae=AP + A + A0+ A =AD L AD 4
As a consequence 0y A = 0 splits into
0eAE =0 (5.9)
A =0 (5.10)
5eAY =0, ... (5.11)

®To be precise we are concentrating on egs. (f.19), (.21]) and disregarding (4.23). The conservation
laws () and () do not admit anomalies in the present context.
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and

5 AW =0 (5.12
5-A0) = 0, 5.13)
with the cross conditions®
50 + 5.4 =0 (5.14)
500 + 6.0 = 0, (5.15)

Therefore, fortunately, our complex splits into subcomplexes and, for example it makes
sense to truncate it at level 4, ie. to eqgs. (5.9), (5-10), (p-19) and (p.14), since these
conditions are not affected by the higher order equations in the complex.

5.2 The search for §, anomalies

Let us explain the strategy to prove the absence of anomalies for fourth order currents.
The first step is to solve eqs. (b.9), (b.10) in general. We will show that, while (5.9) admits
a nontrivial solution (the 2d diff anomaly), (5.1() does not admit any nontrivial solution.
This will be done in appendix B: the proof is based on an argument used for 4d anomalies
in [pg] and adapted to the present context. What we prove precisely is that any solution to
eq. (B-10) is trivial, that is there exist a local functional C'¥) of the background fields such
that if Agl) is a solution to (5.10), then Agl) = d¢ C™. Therefore we can rewrite (5.14) as

5e(AW —5,.0W) =0 (5.16)

This amounts to saying that any cocycle of d; (i.e. any solution to (p-19)) can be written in
a diff-covariant form. This is a piece of very useful information because it strongly limits
the forms of the cochains we have to analyze in order to find the solutions to (pb.19).

What remains for us to do is very simple. Let us start with an example. We write a
first set of chains

3
A, — /d%\/_—gZai I (5.17)
i=1
where

I[ ="V, V,VAR, I§=7"\OV,R,  I=r1"\V,R?

where we have ignored tracelessness of 7. All these cochains are, trivially, cocycles of 4,
and they are the only ones one can construct of this type.”

5The action of §, on Aéz) is trivial.
"In 2 dimensions we have

1
Ruvxp = §R (Gux Gvp = Gup Gur) (5.18)
1
Ry = §9Mu R
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Next we have to find out whether these cocycles are trivial or not. The only possible
counterterms are also 3.

3
C= /d%«/—chij (5.19)
j=1

where
Ji = B"\V,V,R,  Jy=B",\V'V,R,  J3=B",\ R

Applying &, to (F.19) we get

3
57-C = /d2x vV —g Z CZ'MZ']'[]T (520)
ij=1
where M;; is the matrix
220
M;j=—-104 -1 (5.21)
00 4

Since the determinant of this matrix is nonvanishing we can always find ¢; such that (5.20)
reproduce (B.17) for any choice of the parameters a;. Therefore all the cocycles (5.17)
are trivial.

This is not enough since the cocycles (f.17) are not of the most general form. We expect
a true diff anomaly to contain the €, tensor (see section 3). There are three cochains of
such a form

3
A, = /d%\/—gai KT (5.22)
i=1
where

K] = 7 €,,V°V, VR, Kj =7 €, OV°R, Ki =1 €, V*R? (5.23)

They are, trivially, cocycles.
On the other hand now there is only one possible counterterm

C= / d*x \/=gB"*\ €, VV R (5.24)
It it easy to see that
5,0 = — / @ /=g (2760 VOVAV (R + 7360 OV R + 27460 RV R) (5.25)

Therefore this counterterm is not enough to cancel the three previous independent cocycles.
Here come tracelessness of 7. This property is necessary because it is easy to realize that
the last two terms in (f.23), which are proportional to 7#*y, would appear in conservation
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laws in which also the components Jyuy are ‘excited’. This would bring us outside our

system. To avoid this we have to impose that 7 is traceless. This being so, only K7
survives among the cocycles, and only the first term survives in the r.h.s. of (p.24). The
latter precisely cancels the only possible nontrivial cocycle.

To conclude, there are no non-trivial consistent anomalies in the divergence of the
fourth order current.

It is not hard to extend the above argument to sixth and higher order currents, provided
we assume that all the chains can be written in a covariant form. This corresponds to
assuming that there are no non-trivial solutions to eq. (f.I1)) and the analogous higher
equations. Proving this result requires a refinement of the techniques used in appendix B,
and we will not do it here. However it is very reasonable to assume it.

Let us prove the following claim: all solutions to the equation

5,A2M =0

where w1 #2n—1 ig a totally symmetric, traceless ghost parameter (the generalization of
Tuw)), are trivial, i. e. there exists a local functional C (27) of the background fields, such that

Al = 5,00,

We will show this under the assumption that all chains ¢, acts upon can be written in
a diff-covariant form. Therefore we start by writing the most general cocycles as

A, = / Py =g (al® + bK®) (5.26)

where a and b are constants and I and K* are the only possible terms (see appendix B) we
can construct in D = 2, taking into account the tracelessness of w. Their explicit form is:

I, =WtV VR (5.27)
and
K, =whtnte V'V ...V, R (5.28)
Now we claim that the corresponding counterterm is the following:
C = —% /d2:1:\/—_g(aJ“’ + bL¥) (5.29)
where
Jy = BFHm=20 N Vs, o R (5.30)
and

Ly = Br-#m=27 ¢ VOV, V., R (5.31)
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and B is the corresponding background field. Using the formulas

5wg,uz/ =0
5WB;L1...;L27L — vﬂlleQ---HZn + CYCI.

and again the fact that w is traceless, we get, after integration by parts,

5,0 = /dza;\/—g (awht-Hn=20G N, ..V, R+
+ bwul...mn—QUemavovavm o V“2n,2R)

The second term under the integral has to be rearranged by reversing the order of the first
two covariant derivatives (V,V®). Using the formulas in the previous footnote, we have

H1-ef2n—20 a _ M1 fi2n—20 a
W Hn20e 7 VOV, R = w20 VOV, Y, Y, R

_ a A
w20 R AN Ve R

So, a typical additional term has a form

R g
5 W € (o, 9 = 9095 )V s - Ve, VaVipyy - Vg, R

The first part of this term vanishes because of the tracelessness of w and the second because
it leads to contraction of antisymmetric € tensor and symmetric indices in w. Therefore,
we have proven that

5.,C = / d*xy/—g (aI¥ 4 bKY) (5.32)

This means that, allowing for the above assumption, there are no non-trivial anomalies in
any higher spin currents. Therefore a properly chosen regularization should not produce
any covariant anomaly either. This is reflected in our egs. ({.21)) and ([.23), which express
the covariant conservation of the fourth and sixth order currents. The additional terms
in the Lh.s. (which are not present in the consistent version of the conservation law) are
needed in order to guarantee covariance of the divergence in the presence of the non-trivial
gravitational background (see appendix A).

6. Conclusions

In this paper we have shown that the two methods of calculating the integrated flux of
Hawking radiation on a static symmetric black hole, the method that makes use of the
trace anomaly and the one based on the diffeomorphism anomaly, are strictly related. The
two methods actually boil down to the same basic elements. We have also pointed out the
basic role of the integrated conservation equations (B.9) and (B.10).

In order to describe the higher moments of the Hawking radiation spectrum, we have
introduced higher spin currents. They have been constructed starting from a W, algebra
on the complex plane and subsequently lifted to the curved space-time corresponding to the
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black hole background metric. They were shown in [[[1]] to describe the higher moments of
the black hole emission. We passed then to analyze the presence of anomalies in the traces
and covariant divergences of these higher tensorial currents. The above mentioned explicit
construction reveals none. Therefore we went on to analyze the possible existence of higher
order trace and diff anomalies, relying on consistency methods (Wess-Zumino consistency
conditions). In [LT] it was shown that no trace anomaly exists for the fourth order current.
In this paper we have analyzed the most challenging problem of diff anomalies. The result
is still negative: no non-trivial anomalies exist.

The extension of the anomaly analysis to still higher orders is very challenging, but
we believe that we have gathered enough evidence that higher spin currents cannot have
anomalies, only the energy-momentum tensor can. This corresponds to a prejudice ac-
cording to which anomalies exists only when a precise relation exists between number of
derivatives and space-time dimensions. It is also suggested by the presence of a unique
central charge in the underlying W, algebra.

On the other hand anomalies are not necessary to describe higher moments of the
Hawking radiation. Rather, the properties of the W, algebra offer a convincing explanation
for them.® We therefore conclude our analysis with the claim that the universal character of
the Hawking fluxes has its basis in a W, algebra underlying the matter model for radiation.
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A. The T transformations

In this appendix we would like to discuss the nature of the 7 transformations and argue
that they are abelian. Let us start from the second term in the Lh.s. of (f.21), a term which
does not appear in the consistent version of the conservation law. The Lh.s. of ([:2)) is
formally generated by the variation of the action with respect to 7 given by (F-3) and by

Srgus = aV R Tyn (A.1)

where a = —%.

The presence of this nontrivial transformation of the metric under 7 changes completely
the rules laid down in section 5.1. Therefore we must ask ourselves whether ([A.1) is a true

8 After this article was posted on the archive, S.Iso and H.Umetsu pointed out to us that our result
has an additional valence: higher spin anomalies would give rise to a new kind of ’hairs’ corresponding to
higher spin central charges; therefore our proof of the absence of such anomalies shows the agreement of
the Hawking radiation analysis with the no-hair theorem.
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symmetry transformation or a simple functional variation of the fields necessary in order
to derive a covariant conservation law. We will argue here that that the second alternative
is the correct one. Therefore ([A1]) is not a symmetry operation and the rules of section
5.1 are correct, in particular the 7 transformation rules are abelian. But, let us explain
this in stages.

The way eq. ([.21)) was obtained does not allow us to conclude whether it represents a
consistent or covariant conservation law. However the functional variation ([A.1]) contains
a non-universal factor a (a varies according to the regularization and the model) which
should tell us that the latter cannot be a symmetry operation. However, short of a conclu-
sive argument, we can try to embed ([A.1]) as well as (5.3) in a new set of transformations,
where possibly 6,7 # 0, and see whether we can implement a new group theoretical trans-
formation. This is guaranteed if the corresponding functional operator d, turns out to be
nilpotent. However, as we shall see, this is not the case.

Let us consider a general form for variation d-g,,

12
57—9;111 = Z ail(le) (AZ)
i=1
where
IL, =V, V.,V (A.3)

I?, = VoVaV,ur, s
I3, = VOVVyTap
I, = VVo Vi
I}, = VoV 70,00
I8, = VOV Vo757 g
1T, = RV°Tua
IS, = RV,7.,%
I, = RV°7." 39,
1) = V*RTua
1), = V,R7,%
I/ﬁ = VO‘RTaﬁggw,
We look at the possible constraints on the coefficients a; in ([A.J) that come from nilpotence
of §;. Acting with 6, on (p.3) we obtain

672'Bl(;i)ﬂ2#3#4 = (6 V) Tpapspa + Vi 0 Tpopis g + cyel. (A.4)

The first term gives

(5Tvu1)7'u2u3u4 = (A'5)
—6 (3a3 + 2(11()) VMVQRTmmﬁTMag -6 (3&3 + 2a10) VQRTMMBVMTMO@
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+ (15a3 + 6a7) VP RT 1y 158V T g s — 6 (503 +2a7) YV RT 11y 15 “VPT s
+ (9a3 + 6a10) VO RT 41 115"V 5T pg jisa — 6 (5a3 4 2a7) RT 1 15"V s VT i
+3a3RT 1y o 1is VOV T pisas — 303931 1o BT 1y s VPV Ty

+ (15a3 + 6a7) BTy 11 Va VT a5 — 603714y 1oV s Vs VOV T3
—12a4T 3 11 “V iy VQV[;V“’T,WW —12a57 11y pio s V s V‘J‘VﬁV'yTO‘M
—1—6(147'“1MO‘VQV6V5V77'M3“47 + 6(159“1MTHSHfVaVBVVV‘;Tm(;

3
—|—§ (3az — a3 + 2ag) R27’u1 papsTpa "o 1 (3a3 — 3a2) V VﬁRTﬂzu:aBTmaa
+3 (az — a3) VPV 4y RT 1y s 57 1s %o + 6 (a2 + a3 — 2a12) Vi, VORT jy g pa o

3
+§ (—3ag + a3 — 2ag) G u2R27M3u4a7—aﬁB — 3 (a2 — a3 + 2a11) \n VMQRTMSMQTQﬁﬁ

—3(ag + az — 2a12) Gy s VEVP RT 1y paa™p 7 + 6 (a2 + as — a11) VO RT 11 106V s Trs "
+6 (az + ag — 2a12) VO‘RTMHWSVMTQBB —6(2a2 — az + ag + a11) VMRTMHSO‘VMTaﬁg
+12 (ag + az — ay) VMRTMZ,BMVQTQ% —6(ag + ag — ag) gMMV”’RTMWﬂVaTa%

—6 (az + ag — a11) VMRTHWSO‘VQTMBB —3(az + az — 2a12) gmmVQRT%MBVBTQVV
+3 (=3az + ag — 2a8) Ry, 15"V Vi T 5 + 6069101 5o Tpg s *Va VPV gV, %5

+3a2 RT 11 o s VOV 0T s 5 — 3629111 1o BT 1 1 “ VPV 5707

—3 (a1 +2(az + a3 — ag)) gHWQRTHSMO‘VaVﬁTg“&, — 6a27u1“2avu3vu4VﬁV57'a“’«,
60171 115"V iy Vs Va VO 57 = 12067 iy s s Vs VOV VIT57,

+3 (a1 +4(az + az — ag)) RTHWWSVMVO‘Taﬁg

with the symmetrization understood on both sides of the equation. These terms need to
be canceled by the r.h.s. in ([A.4)

v#l 677—#2/13#4 (A-ﬁ)

It follows that the coefficients in front of all the terms in (AJ§) which do not contain any
V,; must be zero. This gives a system of equations for the coefficients a; with a solution
that all a; are zero except a11. Now we argue that, also, a;; must be zero. The variation
0, of metric reads

57—9#1/ = allv,uRszaa (A.7)
Then, 62By,; ysusps is reduced to
5235?#2#3#4 = AV 10 Tpapaps. —24 a1V Vi R7 g °70 (A.8)

—24 allvﬁRTmuzﬁvuaTMaa
—24 a11Vy, RTuzusavuﬂaﬁﬁ
+24 allv#lRTuzusavaTmﬁﬁ

where symmetrization in p; is understood on the right hand side. Note that in each term
in (A.§) there is a 7 with two external indices without any derivative acting on it. So, we
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conclude that aj; must be zero because whatever choice we take for 6;7,,,,.,, the term
V11 0-Tpspspus Will nOt be able to cancel the last four terms in (A.§).
In summary, we have shown that

Or G =0 (A.9)
no matter what 07, is. In turn, eq. (A.9), together with eq. (A.4), implies that
8o Tpp =0 (A.10)

To conclude this appendix, let us justify the claim we made that eq. (5.2G) is the most
general 2n-th order covariant cocycle. To this end we prove that terms of the form

wmm“2n71 6#1@1 euzocz tee Eﬂkak val Va2 Tt Vakv . VﬂznflR (A'll)

U

are in fact equivalent to either I¥ or K“. Using the formula valid in D = 2,

€afB€uy = Gapdpr — Yar9pu (A'12)

we can eliminate the e-tensors two by two in () In every step we produce two terms,
out of which the first is zero because of the tracelessness of w and the second contracts two
indices of w with the indices of the covariant derivatives on the right side. The form of the
final expression will depend on parity of k; in the case of even k we get (—1)k/ 2J* and in
the case of odd k, (—1)*~1/2 K«  Therefore, all such terms are already included in the

general form of A, eq. (5.26).

B. Diff cocycles

This appendix is devoted to egs. (B.9) and (5.I0). Our result is that while (5.9) has a
nontrivial solution, the solutions to eq. (5.I() are all trivial. The solution to (f.9) is
the well-known diffeomeorphim anomaly in 2d, therefore we will concentrate on (B.1I0).
Although the same method could be easily applied to find the explicit solutions to (@),
we will not do it here. In the sequel of this appendix the terms covariance and covariant
are used with reference to diffeomorphisms.

The basic idea of this appendix is to apply the results of [65] by adapting them to
the present case. First of all let us notice that the anomaly analysis is carried out in the
Euclidean. We will denote Euclidean tensor indices by lower case Latin letters.

Let us start from a general result in [5]. The general form of the solutions to (f.10) is

AW = / @2 (OnE™ b + By, Dy EO11P2) (B.1)

where b and bgipz

all the indices are saturated except for the explicitly shown ones, and b is not itself a

are polynomial expressions of the fields and their derivatives in which

derivative. Notice that b, b}, ~are not, in general, covariant tensors. For future reference
let us call first type and second type the cocycles having the form of the first and second

term in the r.h.s. of (B.1), respectively.
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We stress that in this appendix we cannot, in general, use covariance as a classifying
device. This obliges us to trudge our way through a multitude of inelegant and unfamil-
iar formulas.

The first type cocycles were discussed both in [ and [f7]. Any such cocycle? is a
partner of a Weyl cocycle and can be eliminated in favor of the partner by subtracting
a suitable counterterm. Since we have shown in [ that, at order four, there are no
non-trivial Weyl cocycles (trace anomalies), we will disregard these cocycles altogether
and concentrate on cocycles of the second type in (B.1]), i.e. on cocycles proportional to
Opy 0p,&™. It is easy to realize that by, ~can be synthetically written in the following
general form

b=A;+TAy +TTA3+TTT' Ay + OT'A5 + T'OT'Ag + 00T A7 (B.2)

where we have understood all the indices (for instance A; stands for A12P?) and Ay, ... Ay
are for weight 1 covariant tensors. The symbol I' represents the linear (not necessarily

. . l
metric) connection I", .

)

An important remark is that, since Agl is degree 4, it follows that all the expressions A;

can only be linear in the background field B and contain 4 —i derivatives for i = 1,2, 3, 4,

one derivative for ¢ = 5 and no derivatives for ¢ = 6, 7.

m
pip2

tremendous complication. There are however expedients one can use to simplify one’s life.

As we said before the fact that we cannot use covariance in expressing b is a

One such contrivance consists in splitting the functional operator J¢ into two parts
J¢ = OF + O (B.3)

where 5g acts on cochains as if they where covariant tensors, while 35 represents the non-
covariant part of the d¢ action.
For instance we have

= OmOné’
O Ly = 0k0nOm€ + OkOMEPTL, + 040, EPTL  — OR0,E' T,
O & = —£"0,¢'
5& 8n£l = _angmamél
O Omdn€l = 0
O OmOnOpE! = 010,69 Dy0pE" 4 BpOmE? DyOnE" + 0n0pE? DyOmE! (B.4)

It is easy to prove that
of =0,

but one must be careful: in general 55 does not commute with the operation of differentia-
tion except when particular conditions are met. The latter include the cases when ¢ acts
on forms or on expressions without unsaturated indices.

9The corresponding anomaly does not contain the €. tensor with an unsaturated index, see eq. (@)
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It is convenient to write the integrand of (B.1]) as a two-form. So we write
8= [ oo = [ ol (B.5)

The lower index in Q¢ represents the form order, the upper index denotes the ghost number
(number of £ factors). We must have §¢A¢ = 5§A§ = 0. Therefore

0¢Q3 = dQ} (B.6)

for some one-form Q3. Applying Sg to both sides of this equation and the local Poincaré

10

lemma,™” we get

56Q2 = dQ} (B.7)

and, of course, &Q% = 0. The reason why we introduce these descent equations is that the
classification problem is easier on lower order forms (with higher ghost number) than on
higher order forms. Briefly stated the strategy consist in chopping off as many coboundaries
and first type cocycles as possible, so as to be left with a subset of possibilities which can
be easily dealt with.

Schematically, first one proves that solutions to 55(62% —dP}) = 0, where @} is defined
by (B.§), either correspond to first type cocycles or are trivial. As a consequence of this
one proves that solutions to 55(62% — dP2) = 0, where Q? is defined by (B.6), are trivial.
Thus possible non-trivial second type cocycles are to be looked for among the Q% (defined
by (B)) that do not vanish (up to a diff transformation), of which none exist.

Let us go now to a more detailed description. We need to introduce some notation. Let
w be a 0,1 or 2-form with component w, wy,, wpm, respectively. We define the dual tensor

n

OV =e"w, Q" = "MWy, W =" wpm

where ¢ is the constant antisymmetric symbol. We remark that if w is an exact 1-form,
the corresponding dual tensor is a divergence. Next let us introduce a distinction which
is basic in the economy of our proof: we separate all the cochains @Q¢,, P! into two classes,
class A and class B. Any term is class A if it contains only 09¢ or higher derivatives of &,
it is class B otherwise.

We are now ready to state the first lemma.

Lemma 1. 4 cocycle A¢ in (B.4) that satisfies
0e(Q3 — dP}) =0 (B.8)

is either a first type cocycle or a coboundary. In the latter case P} can be chosen to be
class A.

0By local Poincaré lemma we mean a basic property of local field theory: if a p-form is a polynomial
made of local fields and their derivatives, whose exterior derivative vanishes, either it is a top form, or it is
a constant if it is a O-form, or it is a total derivative. This is an off-shell statement.
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The proof in [pg] (Theorem 5.1 there) applies to the present case with obvious modifi-
cations. Let us give just one example (out of many). The expression Q¢ = \/—g00¢BVR
(B = B(4)), with indices contracted in all possible ways, is an example of (B-§) where Q3 is
given by the dual of Q¢ and P} vanishes. It corresponds in fact to a coboundary generated
by the counterterm | \/=¢gI'BVR where the I indices are contracted in the same way as
the 00¢ indices in €2.

From Lemma 1 and (B.§), (B-6), it is easy to show that Q% corresponds to a coboundary
Q3 if and only if

Q% = 6c P} + dP? (B.9)

for some class A (or vanishing) P} and some ghost number 2 0-form P}.
Another piece of independent information is provided by the following

Lemma 2. Q? defined by eq. (B.4) can be written in a class A form, that is in a form
bilinear either in Q0& or linear in both 00¢ and 0JOE.

The proof is as follows. The dual tensor to Q% can be written in the general form

EEFT + LOEF, + E00EF3 + L0008 Fy + 00008 Fs 4 £00000E Fg + 0L0EFy
+0E00EFg + OE000E Fy + 0E0000E F 1o + 00E00EF11 + 006000EF 12 (B.10)

where F; with ¢ = 1,...,12 are in general not tensors: they may contain I' factors. For
simplicity all the indices are understood. For instance ££F; stands for £&7 Flz-jl.

Now one can see that, as a consequence of (B.2), (B.4) and (B.§), dQ? must be class
A. Then, dualizing, we see that, in particular, it must be 81F1ijl = 0. This implies, by the
local Poincaré lemma, that Flz-jl = 8mF,-jlm for a suitable tensor F' antisymmetric in [, m.
But then we can write

A(EEF) = 0n((0€'E + 08 Fy™™)

This means that F; can be absorbed into F>. We can repeat the same trick on the other
terms. Fg and Fjo do not contain derivatives, therefore they must vanish. All the other
terms can be reduced to the form Fj; and Fjs. This proves the lemma.

It follows from (B.9) that dP? is class A. But then, using the same argument as in the
previous lemma, it is easy to see that P02 itself is class A.

Next one can prove:

Lemma 3. Q?, given by eq. ([B-8), is a coboundary if and only if
0¢(QF — dPg) =0 (B.11)
where P2 is class A or 0.

The only if part follows immediately by applying 55 to (B.9) and using the previous
remark. The proof of the if part is more complicated. We give it here in some detail. We
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have to prove that if Q7 satisfies (B.11) then it can be written in the form (B.9). Let us
write down the general form of the components of Q%:

Q3. 00EDIE(A + T'By) + 00E DOIEC (B.12)

where A;, By, C; are covariant tensors. All the indices have been understood except the
one-form component index [. It it easy to see that dP02, being class A, can be absorbed
into Q%; therefore we will not indicate it explicitly. The tensors in (B.13) have evident
symmetry properties in the indices which we will not spell out. Acting now with Sg on Q?,
after some simple algebra we get:

Opy Opy €' Dy 0, € (87’1 Or,F Bt — 30; Dy " Cﬁ}spquqzqg)
To satisfy (B.11]) this must vanish, which implies the constraint
PIP2q1GaT1T2 _ o P1P2G14T
Bll‘lij 1927172 — 3012}6 24142 15;2 (B'13)

while the tensor A; is unconstrained.
Now let us write a class A P} in the form

Pl: 00T K;+TT L+ 0T M) (B.14)

with the same conventions as above. There are other possible terms one could add, but
these will suffice. After operating with 55 we get
Sﬁpll D =0 Ot [8q18q2§j Kﬁ;pquqz + 0,04 04 € Mﬁ';—pquqzr (B.15)

ik P1p29192717T2 P1P2917T1qG2 §T2 _ )\ /P1P2T17T241 §92
+ 09, 03,6'T <Llijk +2My ;" =M, O >]

T1iT2 lij

From this we see that SgPll reproduces Q% provided

P1P2qiq2 __ _ AP1P2q1q2
Klij - All]
P1P2G14293 __ _ P1P2q142q3
M;,; = —C;
p1p2qi1geTiT2 _ ~P1P2q1G2(T1 ¢T2) p1p2r172(q1 $q2)
L = Cl 0,7+ Cj Oy, (B.16)

where indices in round brackets are meant to be symmetrized. We notice that this implies
in particular that the tensor M must be chosen symmetric in the g1, qo, g3 indices. This
proves Lemma 3.

At this point our quest comes to an end, because from (B.11) and (B.7), it follows that

(@5 — 0¢P5) = 0 (B.17)

Therefore, since we want to find possible non-trivial second type cocycles, we have to look
among the Q3 that do not satisfy eq. (B.17). We will prove that there exist none. One
way to see it is as follows. Since Q7 is class A (lemma 2), also 5562% is. Using an argument
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similar to the one which leads to Lemma 2, from ([B.7) one can show that Q3 can be written
in the form

Op, apzfi Oq aquj arfk E?Ig)zqwzr (B.18)

where E is a tensor antisymmetric in the exchange of the triple {p1,p2,i} with {q1,¢2,7}.

Next, differentiating the F term we get

20:0p, 0p, &' 09, g, 0,6" BLP* " 15, 0,,67 0y, 0,87 0,0, B2 02
+8p1 angz 8(11 8q2£] argkasEfjl]f2q1¢I2r

Since dQ% must be class A, we must have in particular 9s& = 0. However E is a tensor
linear in the B™ tensor and does not contain any derivatives. It is evident that 8,F = 0
cannot be satisfied, unless £ = 0.

In conclusion there are no nontrivial solutions to (5.10).
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